2019-11-01から1ヶ月間の記事一覧
背景 学ぶこと 参考文献
背景 学ぶこと 参考文献
背景 確率的グラフィカルモデルとその学問的基礎であるグラフ理論を学ぶ。また、グラフの学習やグラフ上での推論も扱う。 学ぶこと グラフ理論 ベイジアンネットワーク マルコフネットワーク マルコフ確率場 ボルツマンマシン 参考文献 Probabilistic Graphi…
背景 確率論、統計的漸近理論という基礎を踏まえたうえで応用分野としての統計学を扱う。 学ぶこと 検定 時系列分析 karate-odori.hatenablog.com 回帰 分類 の予定 参考文献 数理統計学の基礎作者: 野田一雄,宮岡悦良出版社/メーカー: 共立出版発売日: 1992…
背景 学ぶこと 行列これだけは(統計学への最短コース) karate-odori.hatenablog.com 行列 線形写像 行列式 ベクトル空間 ランク 固有値と固有ベクトル 内積 正規行列の対角化 ジョルダン標準形 参考文献 線形代数学(新装版)作者: 川久保 勝夫出版社/メー…
背景 学ぶこと 実数(最大・上界・上限/ワイエルシュトラウスの公理) karate-odori.hatenablog.com 集合と写像 関係,同値関係,同値類,商空間 集合列の極限、収束 karate-odori.hatenablog.com 参考文献 工学のための関数解析 (工学のための数学)作者: …
標準形(と呼ぶとする) 双対性
最適化問題の基本形 大分類
参考 新版 数理計画入門作者: 福島雅夫出版社/メーカー: 朝倉書店発売日: 2011/02/15メディア: 単行本購入: 1人 クリック: 2回この商品を含むブログ (3件) を見る機械学習のための連続最適化 (機械学習プロフェッショナルシリーズ)作者: 金森敬文,鈴木大慈,…
関数値の収束 定義
最大と最小 上界と下界/上限と下限 ワイエルシュトラウスの公理
背景 「線形代数」「集合と位相」と共に大学数学の基礎。極限、微分積分を扱う。 後にベクトル空間のベクトルに拡張される。関数解析で扱う。 学ぶこと 実数列の収束 https://karate-odori.hatenablog.com/entry/2019/09/23/212652 関数値の収束 https://kar…
大数の法則とは 強法則と弱法則 チェビシェフの弱法則 ヒンチンの弱法則 平均2次収束 コルモゴロフの強法則 経験分布関数の一致性とグリベンコ・カンテリの定理 回帰係数の最小2乗推定量の一致性 AR(1)の標本平均の収束
MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$'], ['\\(','\\)']], displayMath: [ ['$$','$$'], ["\\[","\\]"] ] } }); 実数体上のベクトル空間
背景 (線形代数で学んだベクトルだけでなく)広い意味でのベクトルについての解析学(微分積分)である。ここでは、これまでの3次元ユークリッド空間からn次元、無限次元へ、またベクトルとして関数なども含む(関数空間)。ただし関数のノルムなどを考える…
MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$'], ['\\(','\\)']], displayMath: [ ['$$','$$'], ["\\[","\\]"] ] } }); ロルの定理 平均値の定理 コーシーの平均値の定理 テイラーの定理 多変数関数の平均値の定理 多変数関数のテイラーの定理
MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$'], ['\\(','\\)']], displayMath: [ ['$$','$$'], ["\\[","\\]"] ] } }); 正項級数の収束 交項級数の収束 一般の級数の収束 べき級数の収束 収束半径の具体例 べき級数の性質(連続性、項別積分、項別…